
CSCC24 Week 3 Notes
1

Lambda Functions:
- It is an anonymous function, which is a function without giving it a name.
- A lambda function is denoted by the "\" character.
- Syntax: \(var) -> (expression)

E.g.

- Note: Lambda functions can be used as a substitute for missing parameters.
- If you intend 2 parameters, the Haskell culture is to model it as a nested function:

\x -> (\y -> 2*x - 3*y) (those parentheses can be omitted). This creates a function that
maps the 1st parameter to a function that takes the 2nd parameter. Doing this is called
currying.
The shorthand way of doing it is: \x y -> 2*x - 3*y
E.g.

Notice that both ways work and give the same result.

- Recall from earlier diffSq x y = (x - y) * (x + y). This can be written as
diffSq = \x y -> (x - y) * (x + y) or even diffSq x = \y -> (x - y) * (x + y).
E.g.

- When applying a function to 2 parameters, such as doing function a b, that’s shorthand

for (function a) b.

CSCC24 Week 3 Notes
2

E.g.
diffSq 10 5 is shorthand for (diffSq 10) 5.

 Compare this with the diffSq examples from above and
notice that you get the same result.

- Note: It is possible to use “diffSq 10” alone. This is called a partial application. Partial
application is when you decide to use a function but not give it all of the needed
parameters. When it is evaluated, here is what happens:
diffSq 10
→ (\x y -> (x - y) * (x + y)) 10
→ \y -> (10 - y) * (10 + y)

- Typewise, X -> Y -> A is shorthand for X -> (Y -> A).
Higher Order Function:

- Higher Order Functions are a unique feature of Haskell where you can use a function
as an input or output argument.
Note: We use () to show that a function takes a function as an input.

- E.g.

The first function multiplies each variable by 2. 4*2 + 7*2 = 22.
The second function squares each variable. 42 + 72 = 65.
The third function increases each variable by 2. 4+2 + 7+2 = 15.
In the first picture above, (Int -> Int) shows that four_plus_seven takes in a function as
an input and that function takes in an Int as an input and outputs something of type Int.

- E.g.

5*4 + 12 = 32
5*7 + 12 = 47
32 + 47 = 79

Parametric Polymorphism:
- A polymorphic function is a function that works for many different types.
- Polymorphic: Can become one of many types.

CSCC24 Week 3 Notes
3

- Monomorphic: Stuck with being one single type.
- Also known as generics in other languages.
- Type variables always begin in lowercase whereas concrete types like Int or String

always start with an uppercase letter.
- Just as a variable represents some value of a given type, a type variable represents

some type. A type variable represents one type across the type signature and function
definition in the same way a variable represents a value throughout the scope it's
defined in.

- E.g.

In the add function, only Integers are allowed. Hence, when I tried doing add 2.0 3.0, I
got an error. However, in add2, as long as the inputs are numbers, I can add integers,
floats or a mix.
Note: Num x => just means that x must be of type Num, or x must be a number. I need
to put this or else I get an error. This is because if I don’t specify the type, I could,
theoretically, add 2 non-numbers, which would cause an error. Hence, Haskell mandated
that I put the Num x => part.

- E.g.
rep2 :: a -> [a]
In a -> [a], the “a” there is a type variable or type parameter. Names of type variables
are up to you, doesn't have to be “a”, but does have to start with lowercase.
E.g. element, myElementType, etc

CSCC24 Week 3 Notes
4

Note: Type constants/Concrete types, names of built-in types and defined types, start
with uppercase.
E.g. Integer, Bool, String

- Note: The choice of the type is up to the user, not the provider. Furthermore, in
parametric polymorphism, the “parametric” part means that the provider is not told what
the user chooses. As a result, the code can be inflexible. However, it’s easy to test your
code.

- Generally, flexibility for the implementer is in direct conflict with predictability for the user
and vice versa.

Map:
- A map is the name of a higher-order function that applies a given function to each

element of a functor, such as a list, returning a list of results in the same order. It is often
called apply-to-all when considered in functional form.

- Can be written in 2 ways:
1. map :: (a -> b) -> [a] -> [b]
2. map :: (a -> b) -> ([a] -> [b])

- E.g.

By having the word “map”, it allowed me to use the square function on a list.

- E.g.

Notice that when I put the keyword “map” at the beginning, I can run ascii_conversion on
a list.

https://en.wikipedia.org/wiki/Functional_form

CSCC24 Week 3 Notes
5

- What it does by example:
map ord ['a', 'b', 'c']
= [ord 'a', ord 'b', ord 'c']
= [97, 98, 99]

- Consider this: map (map ord) [['a', 'b', 'c'], ['x', 'y', 'z']] :: [[Int]]
Detailed type breakdown:

- inner map :: (Char -> Int) -> ([Char] -> [Int])
(I'm choosing a=Char, b=Int)

- map ord :: [Char] -> [Int]
- outer map :: ([Char] -> [Int]) -> [[Char]] -> [[Int]]

(I'm choosing a=[Char], b=[Int])
- map (map ord) :: [[Char]] -> [[Int]]

- What it does by example:
map (map ord) [['a', 'b', 'c'], ['x', 'y', 'z']]
= [map ord ['a', 'b', 'c'], map ord ['x', 'y', 'z']]
= [[ord 'a', ord 'b', ord 'c'], [ord 'x', ord 'y', ord 'z']]
= [[97, 98, 99], [120, 121, 122]]

- E.g.

- Note: To use ord, you need to do import Data.Char.

Type-specific behaviour preview:
- Consider the code below:

The square function takes in a number and returns the square of that number. Since any
number, not just integers, can be squared, we want to use parametric polymorphism.
However, there’s an issue. What happens if the user enters a string or boolean? To
avoid this problem, we have to do the following:

By putting the Num a => part, we are saying that “a” must be a number.

User-defined types:
- Also called algebraic data types.
- We can define our own types using the keyword data.
- Each option must start with an uppercase letter.
- We use | to say alternatively.
- There needs to be at least one case, and each case can have 0 or more fields.

CSCC24 Week 3 Notes
6

- E.g.

Here, the type name is Area.
Circle, Square and Triangle are called data constructors or tags. As stated before, all
these data constructors must be capitalized.
Note: These are not OOP constructors. It's only labelling, not arbitrary initialization code.
Note: These are not OOP subclasses/subtypes either. Circle is not a subtype, it's a term
and value.

Recursive types:
- A recursive data type is a data definition that refers to itself.
- This lets us define even more interesting data structures such as linked lists and trees.
- The line, deriving (Eq, Show), is called the deriving clause. It specifies that we want

the compiler to automatically generate instances of the Eq and Show classes. The EQ
type class is an interface which provides the functionality to test the equality of an
expression. The Show type class has a functionality to print its argument as a String.
Whatever may be its argument, it always prints the result as a String.

CSCC24 Week 3 Notes
7

- E.g.

CSCC24 Week 3 Notes
8

Recursion & Lists:
- E.g. Consider the example below:

A value of type MyIntegerList is one of:

1. INil
2. ICons x xs, if x::Integer and xs::MyIntegerList

data MyIntegerList = INil | ICons Integer MyIntegerList
 deriving (Show, Eq)

exampleMyIntegerList = ICons 4 (ICons (-10) INil)

-- `from0to n` builds a MyIntegerList from 0 to n-1
from0to :: Integer -> MyIntegerList
from0to n = make 0
 where
 make i | i >= n = INil
 | otherwise = ICons i (make (i+1))

myISum :: MyIntegerList -> Integer
myISum INil = 0
myISum (ICons x xs) = x + myISum xs

Recursion & Binary Trees:

- E.g. Consider the example below:

A value of type IntegerBST is one of:

1. IEmpty
2. INode lt x rt, if lt::IntegerBST, x::Integer, rt::IntegerBST

data IntegerBST = IEmpty | INode IntegerBST Integer IntegerBST
 deriving Show

exampleIntegerBST = INode (INode IEmpty 3 IEmpty) 7 (INode IEmpty 10 IEmpty)

ibstInsert :: Integer -> IntegerBST -> IntegerBST
ibstInsert k IEmpty =
 INode IEmpty k IEmpty
ibstInsert k inp@(INode left key right)
 | k < key = INode (ibstInsert k left) key right
 | k > key = INode left key (ibstInsert k right)
 | otherwise = inp -- INode left key right

Note: Since this is functional programming with immutable trees, “insert” means produce
a new tree that is like the input tree but with the new key. Maybe it's better to say “the
tree plus k”.

CSCC24 Week 3 Notes
9

Polymorphic Types:
- Consider the example below:

data MyList a = Nil | Cons a (MyList a) deriving (Eq, Show)

exampleMyListI :: MyList Integer
exampleMyListI = Cons 4 (Cons (-10) Nil)

exampleMyListS :: MyList String
exampleMyListS = Cons "albert" (Cons "bart" Nil)

These are homogeneous lists. They can't have different item types in the same list.
For example, Cons "albert" (Cons True Nil) is illegal because what would be its type,
MyList String? MyList Bool?

- Some polymorphic algebraic data types from the standard library as further examples:
- Maybe:

data Maybe a = Nothing | Just a
-- Great for: Sometimes there is no answer

- Either:
data Either a b = Left a | Right b
-- Great for: Having two possible types.

